

Course Offer

for Incoming Exchange Students

Summer Semester 2025

School of Informatics, Communications and Media

fh-ooe.at/en/hagenberg-campus

Bachelor's Degree Programme

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Automotive C	omputing (Bac	helor, Hagenberg Campus)					
AC.ba	DAB4 U	Database Design	Practice- oriented session	4	Bachelor	3	5
AC.ba	DAB4 V	Database Design	Lecture	4	Bachelor	2	6
AC.ba	WDP4 U	Web Development	Practice- oriented session	4	Bachelor	3	7
AC.ba	WDP4 V	Web Development	Lecture	4	Bachelor	2	8
Artificial Intell	igence Solutio	ns (Bachelor, Hagenberg Campus)					
AIS.ba	DDW2UE	Databases and Data Warehouses	Practice- oriented session	2	Bachelor	3	9
AIS.ba	DDW2VO	Databases and Data Warehouses	Lecture	2	Bachelor	2	10
AIS.ba	DEV2IL	DevOps and MLOps	Integrated course	2	Bachelor	2,5	11
AIS.ba	DIV2IL	Data and Information Visualization	Integrated course	2	Bachelor	2,5	12
AIS.ba	DQP2IL	Data Quality and Data Preprocessing	Integrated course	2	Bachelor	2,5	13
AIS.ba	MLS2UE	Supervised Machine Learning	Practice- oriented session	2	Bachelor	3	14
AIS.ba	MLS2VO	Supervised Machine Learning	Lecture	2	Bachelor	2	15
AIS.ba	PRM2IL	IT Project Management	Integrated course	2	Bachelor	2,5	16
AIS.ba	PST2UE	Basics of Probability and Statistics	Practice- oriented session	2	Bachelor	3	17
AIS.ba	PST2VO	Basics of Probability and Statistics	Lecture	2	Bachelor	2	18
AIS.ba	SYM2UE	Logic and Symbolic Al	Practice- oriented session	2	Bachelor	3	19
AIS.ba	SYM2VO	Logic and Symbolic Al	Lecture	2	Bachelor	2	20
Design of Digi	ital Products (B	achelor, Hagenberg Campus)					
DDP.ba	23_MRE2VO	Market Research	Lecture	2	Bachelor	2	21

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Design of Digital Products (Bachelor, Hagenberg Campus)							
DDP.ba	BEM4IL	Business English & Green Marketing	Integrated course	4	Bachelor	3	22
School of Info	School of Informatics, Communications and Media (Bachelor, Hagenberg Campus)						
FHHGB	AIC1IL_INT	AI in Creativity	Integrated course	2	Bachelor	5	23
FHHGB	CDF1IL_INT	Computer Design and Firmware Programming	Integrated course	2	Bachelor	5	25
FHHGB	DEU1IL_INT	German for Beginners	Integrated course	2	Bachelor	2	26
FHHGB	DEU2IL_INT	German for Beginners with Prior Knowledge	Integrated course	2	Bachelor	2	27
FHHGB	MAD1IL_INTIL	Mobile App Development	Integrated course	2	Bachelor	5	28
FHHGB	SEM1PR_INT2P T	Semester project	Project	2	Bachelor	10	30
FHHGB	VCS1IL_INT	Version Control Systems	Integrated course	2	Bachelor	1,5	31
Hardware-Sof	itware-Design (Bachelor, Hagenberg Campus)					
HSD.ba	ENG2-17ILV	English II	Integrated course	2	Bachelor	2	32
HSD.ba	KUA2-ILV	Al-supported Work	Integrated course	2	Bachelor	0,5	33
Communicati	on and Knowle	dge Media (Bachelor, Hagenberg Cam	ipus)				
KWM.ba	AUP6VO	Adaptivity and Personalization	Lecture	6	Bachelor	3	34
KWM.ba	SCR2IL	Client-Side Scripting	Integrated course	2	Bachelor	3,5	36
KWM.ba	STE2UE	Scientific and Technical English	Practice- oriented session	2	Bachelor	1	37
KWM.ba	WAC2IL	Web Accessibility	Integrated course	2	Bachelor	1	38
Medical and E	Bioinformatics	(Bachelor, Hagenberg Campus)					
MBI.ba	09_PHS2UE	Man: Physiology	Practice- oriented session	2	Bachelor	1,86	40
MBI.ba	21_KEN2UE	English 2	Practice- oriented session	2	Bachelor	2	41
MBI.ba	21_TEN4UE	Technical English 2	Practice- oriented session	4	Bachelor	1	42

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Media Technology and Design (Bachelor, Hagenberg Campus)							
MTD.ba	05_DVC4IL	Digital Imaging / Visual Computing	Integrated course	4	Bachelor	5	43
MTD.ba	05_EMP4IL	Embodied Play	Integrated course	4	Bachelor	5	44
MTD.ba	05_IGP4IL	Interaction and Game Programming	Integrated course	4	Bachelor	5	45
MTD.ba	05_MIR4IL	Mixed Reality	Integrated course	4	Bachelor	5	46
MTD.ba	05_ONM4IL	Online Multimedia	Integrated course	4	Bachelor	5	47
MTD.ba	05_S3D4IL	Special Topic 3D	Integrated course	4	Bachelor	5	48
Software Engineering (Bachelor, Hagenberg Campus)							
SE.ba	20_SPR4PT	Software Study Project 1	Project	4	Bachelor	4	49
Secure Inform	ation Systems	(Bachelor, Hagenberg Campus)					
SIB.ba	HIS4IL	Human Aspects of Information Security	Integrated course	4	Bachelor	2	50
SIB.ba	SEN2IL	Social Engineering	Integrated course	2	Bachelor	2	51
Software Engi	neering (Bach	elor - Part Time, Hagenberg Campus)					
SE.ba	09_VPS5VO	Distributed and Parallel Software Systems	Lecture	5	Bachelor	1	52

Master's Degree Programme

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Data Science	and Engineerin	ig (Master, Hagenberg Campus)					
DSE.ma	0_2CO2U	Computational Intelligence II	Practice- oriented session	2	Master	3	53
DSE.ma	0_2CO2V	Computational Intelligence II	Lecture	2	Master	3	54
DSE.ma	0_MOS2U	Modelling and Simulation	Practice- oriented session	2	Master	2	56
DSE.ma	0_MOS2V	Modelling and Simulation	Lecture	2	Master	3	57
Interactive Me	dia (Master, Ha	igenberg Campus)					
IM.ma	HMF2IL	Hypermedia Frameworks	Integrated course	2	Master	5	58
IM.ma	IVI2IL	Information Visualization	Integrated course	2	Master	5	59
IM.ma	SDM2IL	Software Design Methods	Integrated course	2	Master	5	60
Communicatio	Communication and Knowledge Media (Master, Hagenberg Campus)						
KWM.ma	KWM510	Intercultural Online Collaboration	Integrated course	2	Master	5	61
KWM.ma	KWM531	Leadership	Integrated course	2	Master	2,5	62
Software Engineering (Master, Hagenberg Campus)							
SE.ma	15_DML2ILV	Data Mining and Machine Learning	Integrated course	2	Master	5	64
SE.ma	22_GEP2VO	Generative Programming	Lecture	2	Master	3	65
SE.ma	22_KIN2ILV	Artificial Intelligence	Integrated course	2	Master	5	66
Human-Center	red Computing	(Master - Part Time, Hagenberg Cam	pus)				
HCC.ma	17_DVA2I	Data Preprocessing and Analytics	Integrated course	2	Master	3	67
Information E	ngineering and	-Management (Master - Part Time, Ha	agenberg Carr	ipus)			
IEM.ma	24_KIN2 I	Artificial Intelligence 1	Integrated course	2	Master	3,5	68
Information Se	ecurity Manage	ement (Master - Part Time, Hagenberg	Campus)				
ISM.ma	CCC2ILV	Cross Cultural Business Communication	Integrated course	2	Master	3	69

Database Design (DAB4 U)

Degree course	AC.ba
Course title	Database Design
Course code	DAB4 U
Level	Bachelor
Term	SS25
Lecturer	Andreas Müller
Contact hours per week	2,4
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

In this course we will discuss fundamental concepts of databases (relationl and non-relational). Topics include Entity Relationship Diagrams, Relational Models & SQL, Stored Procedures, Triggers, Indexes, Concurrency, NoSQL, APIs & ORM and Security.

Prerequisites:

Database Design (DAB4 V)

Degree course	AC.ba
Course title	Database Design
Course code	DAB4 V
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	1,6
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

In this course we will discuss fundamental concepts of databases (relationI and non-relational). Topics include Entity Relationship Diagrams, Relational Models & SQL, Stored Procedures, Triggers, Indexes, Concurrency, NoSQL, APIs & ORM and Security.

Prerequisites:

Web Development (WDP4 U)

Degree course	AC.ba
Course title	Web Development
Course code	WDP4 U
Level	Bachelor
Term	SS25
Lecturer	Andreas Müller
Contact hours per week	2,4
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

In this course we will discuss fundamental concepts and technologies from the field of Web Development. Topics include HTML, CSS, JavaScript, Client-side Frameworks and Backends.

Prerequisites:

Web Development (WDP4 V)

Degree course	AC.ba
Course title	Web Development
Course code	WDP4 V
Level	Bachelor
Term	SS25
Lecturer	Andreas Müller
Contact hours per week	1,6
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

In this course we will discuss fundamental concepts and technologies from the field of Web Development. Topics include HTML, CSS, JavaScript, Client-side Frameworks and Backends.

Prerequisites:

Databases and Data Warehouses (DDW2UE)

Degree course	AIS.ba
Course title	Databases and Data Warehouses
Course code	DDW2UE
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

n.a.

Content:

Introduction to databases and advantages of using database systems, basic concepts (data model, scheme, instances) and components of database systems, architectures of database systems and data independence, basics of modeling (model concept, techniques and methods), database models; entity-relationship model, relational model and relational query models (relational algebra, query and tuple calculus), phases of database design (conceptual, logical, physical design), relational database design (functional dependencies, normal forms, transformation properties), basics of database definition and database queries with SQL. Analytical vs. transactional data processing – different architectures for different requirements, data warehouse (DWH) as a unified source of record for analytical data, application examples for data warehouse systems and DWH architectures. Conceptual modeling: dimensional fact model according to Golfarelli. Implementation of dimensional data models on RDBMS: star schema & snowflake schema. Data integration: data vault schema. Extract-Transform-Load process (ETL). Technological concepts for data warehousing: bitmap index, column store, compression, in-memory.

Prerequisites:

FCS1, ALG1, PRO1 Basics of computer science, algorithms & data structures, and programming

Databases and Data Warehouses (DDW2VO)

Degree course	AIS.ba
Course title	Databases and Data Warehouses
Course code	DDW2VO
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

Introduction to databases and advantages of using database systems, basic concepts (data model, scheme, instances) and components of database systems, architectures of database systems and data independence, basics of modeling (model concept, techniques and methods), database models; entity-relationship model, relational model and relational query models (relational algebra, query and tuple calculus), phases of database design (conceptual, logical, physical design), relational database design (functional dependencies, normal forms, transformation properties), basics of database definition and database queries with SQL. Analytical vs. transactional data processing – different architectures for different requirements, data warehouse (DWH) as a unified source of record for analytical data, application examples for data warehouse systems and DWH architectures. Conceptual modeling: dimensional fact model according to Golfarelli. Implementation of dimensional data models on RDBMS: star schema & snowflake schema. Data integration: data vault schema. Extract-Transform-Load process (ETL). Technological concepts for data warehousing: bitmap index, column store, compression, in-memory.

Prerequisites:

FCS1, ALG1, PRO1 Basics of computer science, algorithms & data structures, and programming

DevOps and MLOps (DEV2IL)

Degree course	AIS.ba
Course title	DevOps and MLOps
Course code	DEV2IL
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

Graduates know the motivation and basic concepts of the DevOps/MLOps culture and can automate the process of creating, testing and delivering software in general and machine learning models, in particular, using various tools.

Content:

Motivation and basic concepts of the DevOps/MLOps culture, process of software deployment (continuous deployment), version control and CI/CD systems, machine learning workflow (data preparation/training/test/deployment) and model lifecycle management, methods and tools for automating the ML workflow, definition of CI/CD

pipelines on different platforms, command line interfaces and scripting, container management, monitoring and observability.

Prerequisites:

FCS1, PRO1 Basics of computer science and programming

Data and Information Visualization (DIV2IL)

Degree course	AIS.ba
Course title	Data and Information Visualization
Course code	DIV2IL
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

Graduates are aware of the importance of visualization for understanding and interpreting data, they can classify data sources and types, and know appropriate types of visualization. They can design visualizations so that they correspond to human visual perception. Graduates can further apply the most important models and steps for the process of information visualization to their own tasks. They are able to create relevant visualizations for a selected data set using visualization tools in order to identify characteristic patterns, outliers or trends.

Content:

The course introduces the essential contents of interactive information visualization. It is explained, 1.) where the added value of information visualization lies, 2.) to what extent visualizations can exploit human perception to make patterns, trends, and outliers in abstract data visible, 3.) how visualizations help memory and cognition, 4.) which cognitive and perceptual limits information visualization has, and 5.) which central role interaction plays in information visualization. This theoretical content is applied in practice and deepened in the practical part of the course by interactively visualizing a wide variety of data sets with Python visualization libraries (e.g., Seaborn, Altair) and the visualization tools (e.g. Tableau and Microsoft Power BI) in order to identify interesting patterns or trends in them. The technological implementation and the user-friendly design of the visualizations are evaluated.

Prerequisites:

IAI1, FCS1, ALG1, PRO1, MAT1 Basics of computer science, algorithms & data structures, Python programming, and linear algebra

Data Quality and Data Preprocessing (DQP2IL)

Degree course	AIS.ba
Course title	Data Quality and Data Preprocessing
Course code	DQP2IL
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

Graduates know the essential methods for preprocessing data for advanced machine learning, in particular, scaling and transformation, as well as treatment and imputation of missing values. They can implement these in Python using the 'pandas' package to solve practical tasks.

Content:

Introduction to data: basic introduction and concepts; taxonomy of data; data representation; summarization and exploratory analysis; distance and similarity; example: central limit theorem. Data preprocessing: the data engineering pipeline; wrangling, cleaning, preprocessing; data quality; descriptive data summarization: basic statistics, skewness, dispersion, outliers; the box plot; missing values: sources (missing at random, missing not at random, not missing at random), mitigation strategies, missing values imputation; noise and noise removal; binning and scaling; basics of principal component analysis and linear discriminant analysis. All concepts and methods will be practiced in the exercise part of the course based on Python and the 'pandas' library.

Prerequisites:

IAI1, FCS1, ALG1, PRO1, MAT1 Basics of computer science, algorithms & data structures, Python programming, and linear algebra

Supervised Machine Learning (MLS2UE)

Degree course	AIS.ba
Course title	Supervised Machine Learning
Course code	MLS2UE
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

n.a.

Content:

Introduction to supervised machine learning, classification, and regression; joint distribution of inputs and outputs, generalization error; estimation of generalization error using training and test sets; cross validation; confusion tables and evaluation measures derived from them; evaluation measures for unbalanced classification tasks; receiver-operator characteristics curve; evaluation measures for regression; underfitting and overfitting; hyperparameter optimization; supervised machine learning methods: k-nearest neighbor, linear regression, support vector machines, decision trees, tree ensembles: bagging (random forests) and boosting. Extensive practical exercises deepen the subjects of the lecture through practical examples.

Prerequisites:

IAI1, ALG1, PRO1, MAT1 Basics of AI, algorithms & data structures, Python programming, linear algebra, and calculus

Supervised Machine Learning (MLS2VO)

Degree course	AIS.ba
Course title	Supervised Machine Learning
Course code	MLS2VO
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

Introduction to supervised machine learning, classification, and regression; joint distribution of inputs and outputs, generalization error; estimation of generalization error using training and test sets; cross validation; confusion tables and evaluation measures derived from them; evaluation measures for unbalanced classification tasks; receiver-operator characteristics curve; evaluation measures for regression; underfitting and overfitting; hyperparameter optimization; supervised machine learning methods: k-nearest neighbor, linear regression, support vector machines, decision trees, tree ensembles: bagging (random forests) and boosting. Extensive practical exercises deepen the subjects of the lecture through practical examples.

Prerequisites:

IAI1, ALG1, PRO1, MAT1 Basics of AI, algorithms & data structures, Python programming, linear algebra, and calculus

IT Project Management (PRM2IL)

Degree course	AIS.ba
Course title	IT Project Management
Course code	PRM2IL
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

Graduates have detailed knowledge of modern project development methods that focus on customers and quality. That particularly includes agile approaches. They are also familiar with maintaining product quality throughout the entire product lifecycle (application lifecycle management).

Content:

Project management, project calculation, key figures and controlling, document management, agile project management, quality management and development, quality models, risk treatment, risk management, product life cycle management, basic process terms, modern development processes (including documents, rolls, tools).

Prerequisites:

FCS1, PRO1 Basics of computer science and programming

Basics of Probability and Statistics (PST2UE)

Degree course	AIS.ba
Course title	Basics of Probability and Statistics
Course code	PST2UE
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

n.a.

Content:

Probability theory: random experiments and probability, combinatorics, conditional probability and Bayes rule, random variables, expectation and variance, discrete distributions, joint distributions, (conditional) independence, continuous distributions, normal distribution and the central limit theorem. Basics of descriptive statistics

Inferential statistics: estimators and their properties, confidence intervals, basic concepts of hypothesis testing with binomial test and t-tests as examples. Exercises deepen the subjects of the lecture through practical examples.

Prerequisites:

MAT1 Basics of linear algebra and calculus

Basics of Probability and Statistics (PST2VO)

Degree course	AIS.ba
Course title	Basics of Probability and Statistics
Course code	PST2VO
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

Probability theory: random experiments and probability, combinatorics, conditional probability and Bayes rule, random variables, expectation and variance, discrete distributions, joint distributions, (conditional) independence, continuous distributions, normal distribution and the central limit theorem. Basics of descriptive statistics

Inferential statistics: estimators and their properties, confidence intervals, basic concepts of hypothesis testing with binomial test and t-tests as examples. Exercises deepen the subjects of the lecture through practical examples.

Prerequisites:

MAT1 Basics of linear algebra and calculus

Logic and Symbolic AI (SYM2UE)

Degree course	AIS.ba
Course title	Logic and Symbolic Al
Course code	SYM2UE
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	5

Learning objectives:

n.a.

Content:

Logic as the language of science: propositional and predicate logic, knowledge representation, entailment vs. inference, soundness and completeness. Elementary AI algorithms: search (including informed search, game search and constraint satisfaction) and planning. Symbolic representation of uncertainty: Joint distributions of random variables, Bayesian networks, hidden Markov models to Markov reward and Markov decision processes and foundations of reinforcement learning. Exercises deepen the subjects of the lecture through practical examples.

Prerequisites:

IAI1, ALG1, PRO1, MAT1 Basics of AI, algorithms & data structures, Python programming, linear algebra, and calculus

Logic and Symbolic AI (SYM2VO)

Degree course	AIS.ba
Course title	Logic and Symbolic Al
Course code	SYM2VO
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	2
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

Logic as the language of science: propositional and predicate logic, knowledge representation, entailment vs. inference, soundness and completeness. Elementary AI algorithms: search (including informed search, game search and constraint satisfaction) and planning. Symbolic representation of uncertainty: Joint distributions of random variables, Bayesian networks, hidden Markov models to Markov reward and Markov decision processes and foundations of reinforcement learning. Exercises deepen the subjects of the lecture through practical examples.

Prerequisites:

IAI1, ALG1, PRO1, MAT1 Basics of AI, algorithms & data structures, Python programming, linear algebra, and calculus

(23_MRE2VO)

Degree course	DDP.ba
Course title	Market Research
Course code	23_MRE2VO
Level	Bachelor
Term	SS25
Lecturer	Robert Schenkenfelder
Contact hours per week	2
ECTS credits	2
Course type	Lecture
Examinations	written examination
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Introduction to the basics of the market (market definition and assessment of market potential, etc.), the key figures of market analysis (market potential, market volume, market exploitation, etc.) and methods of market analysis (primary and secondary research, SWOT analysis, strengths/weaknesses analysis, competitor analysis, customer/target group analysis, etc.). Definition of objectives, market segments and target groups in the course of market, competition and industry analysis.

Translated with DeepL.com (free version)

Prerequisites:

A sound knowledge of English, a minimum of B2-level

(BEM4IL)

Degree course	DDP.ba
Course title	Business English & Green Marketing
Course code	BEM4IL
Level	Bachelor
Term	SS25
Lecturer	Jordanka Kretzschmar
Contact hours per week	2
ECTS credits	3
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Development of functional technical vocabulary in the field of business English, reception and production of written technical texts (e.g. commercial correspondence), basic job-related presentations and technical discourse at B2+ level.

Prerequisites:

n.a.

Al in Creativity (AIC1IL_INT)

Degree course	FHHGB
Course title	AI in Creativity
Course code	AIC1IL_INT
Level	Bachelor
Term	SS25
Lecturer	Alexander Schurr
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	10

Learning objectives:

• Understand the fundamentals of creativity and its different dimensions, including artistic, scientific, and technological.

• Learn the basics of AI and its different applications in the field of creativity, including generative art, music composition, and storytelling.

• Explore the ethical and social implications of using AI to create art and other forms of creative output and develop a critical perspective on the role of technology in creativity.

• Analyse case studies and real-world examples of AI-generated art and creative works, and evaluate their aesthetic, technical, and emotional qualities.

• Develop practical skills in using AI tools and techniques to generate creative output, including using neural networks, machine learning algorithms, and other computational tools.

Content:

Introduction to Creativity and AI

- The concept of creativity and its various dimensions
- What is AI? Types of AI and its applications in different domains
- The intersection of creativity and AI: past, present, and future
- AI in Creative Fields
- · Generative art: algorithms and techniques for creating art with AI
- Music composition: using AI for generating music and exploring new genres
- · Storytelling: AI tools for generating narratives, plotlines, and characters

Ethical and Social Implications

- Bias in AI and its impact on creative work
- Ownership and copyright of AI-generated content
- The role of AI in changing the creative process and the meaning of "art"

Collaboration and Co-creation

- Human-Al interaction in the creative process
- Integrating AI-generated output with human creativity
- Case studies of successful collaborations and co-creation projects Hands-on Practice
- Experimentation with AI tools and techniques for creative output
- Project-based learning: creating an AI-generated art, music, or storytelling project
- Feedback and critique sessions
- Future of Creativity and AI
- The impact of AI on the creative industries and professions
- Potential new forms of creative expression with AI
- Ethical and social considerations for the future of AI in creativity

Prerequisites:

None

Computer Design and Firmware Programming (CDF1IL_INT)

Degree course	FHHGB
Course title	Computer Design and Firmware Programming
Course code	CDF1IL_INT
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	10

Learning objectives:

Knowing the structure and basic functioning of a simple CPU (Central Processing Unit) Understanding the relationship between hardware structure, time sequences and programmability in machine and assembly language Hardware-near programming and handling of a modern ARM microcontroller platform Ability to program peripherals of microcontrollers

Content:

Introduction to computer architecture: RISC/CISC, control unit (FSM, micro-programmed) and datapath

CPU-Microarchitecture: structure and timing models, working through the design of a simple CPU Introduction to the ARM assembly programming language: instruction classes, command architecture, addressing modes, hands-on lab on ARM assembly basics Programming of ARM-Microcontrollers in C and assembly language, macro programming, inline assembly, use of libraries, compiler directives

Prerequisites:

Foundations of Digital Design (combinational and sequential circuits, Finite State Machines), Basic skills in programming

German for Beginners (DEU1IL_INT)

Degree course	FHHGB
Course title	German for Beginners
Course code	DEU1IL_INT
Level	Bachelor
Term	SS25
Lecturer	Gabriele Hofmüller
Contact hours per week	1,6
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

n.a.

Prerequisites:

none

German for Beginners with Prior Knowledge (DEU2IL_INT)

Degree course	FHHGB
Course title	German for Beginners with Prior Knowledge
Course code	DEU2IL_INT
Level	Bachelor
Term	SS25
Lecturer	Gabriele Hofmüller
Contact hours per week	1,6
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

n.a.

Prerequisites:

Basic knowledge in german

Mobile App Development (MAD1IL_INTIL)

Degree course	FHHGB
Course title	Mobile App Development
Course code	MAD1IL_INTIL
Level	Bachelor
Term	SS25
Lecturer	Christopher Köllner
Contact hours per week	4
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	10

Learning objectives:

By the end of this course, students will have the foundational skills to build functional Android applications using Kotlin and Jetpack Compose, setting a solid groundwork for further learning and development in mobile app development.

Content:

This introductory course is designed for beginners who want to start their journey into Android app development using Kotlin and Jetpack Compose. Throughout this course, students will learn the fundamentals of Android development, including the Kotlin programming language and the modern UI toolkit, Jetpack Compose, to build engaging and efficient mobile applications.

Course objectives:

- Understand the basics of the Kotlin programming language and its features.
- Get acquainted with the Android development environment and tools.
- Learn the principles and components of Jetpack Compose for building user interfaces.
- Develop hands-on experience by creating simple Android applications.
- Gain knowledge of best practices and design patterns in modern Android development.

Assessment:

- (Bi-)Weekly coding assignments and quizzes
- Final project presentation and code review

Prerequisites:

- Basic knowledge in object-oriented programming.Curiosity and willingness to learn.

Semester project (SEM1PR_INT2PT)

Degree course	FHHGB
Course title	Semester project
Course code	SEM1PR_INT2PT
Level	Bachelor
Term	SS25
Lecturer	Johannes Schönböck, Mirjam Augstein
Contact hours per week	1
ECTS credits	10
Course type	Project
Examinations	continuous assessment
Language of instruction	English
Places for international students	30

Learning objectives:

Working in a team on a specific topic, where you fulfill most of the prerequisites of the project.

Content:

Define Milestones and a final goal of the project. Write a project report at the end including your definded milestones. Report problems and argue why you have chosen which technology and how you solved upcoming problems.

The Semester Project is designed in such a way that we provide current problems and topics from our research projects. The topics are quite broad, but more or less revolve around the focus on (hybrid) collaboration, recommendation systems and the practical use of AI tools to solve problems in our research work. The project is carried out as a group. This means that at the beginning of the semester, we will present you with specific topics and you as a group will decide which topic you would like to work on.

Prerequisites:

The Prerequisites depend on the project you have chosen. For a web project for example HTML, CSS,

javascript, PHP and MySQL.

Version Control Systems (VCS1IL_INT)

Degree course	FHHGB
Course title	Version Control Systems
Course code	VCS1IL_INT
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	1
ECTS credits	1,5
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

In this lecture you learn the basic concepts of decentralized version control systems by using Git. Besides the technical details how Git stores data and how its repositories are structured, the lecture also contains a general overview of the purpose, concepts, and historical development of version control systems. Furthermore, several git commands relevant in the daily life of a software engineering are explained and trained, and typical version control workflows in agile software development are also covered.

Prerequisites:

None

English II (ENG2-17ILV)

Degree course	HSD.ba
Course title	English II
Course code	ENG2-17ILV
Level	Bachelor
Term	SS25
Lecturer	Yan Philip Templier
Contact hours per week	2
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives: n.a.

Content:

n.a.

Prerequisites:

n.a.

Al-supported Work (KUA2-ILV)

Degree course	HSD.ba
Course title	Al-supported Work
Course code	KUA2-ILV
Level	Bachelor
Term	SS25
Lecturer	
Contact hours per week	1
ECTS credits	0,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

n.a.

Prerequisites:

n.a.

Adaptivity and Personalization (AUP6VO)

Degree course	KWM.ba
Course title	Adaptivity and Personalization
Course code	AUP6VO
Level	Bachelor
Term	SS25
Lecturer	Mirjam Augstein
Contact hours per week	2
ECTS credits	3
Course type	Lecture
Examinations	written examination
Language of instruction	English
Places for international students	4

Learning objectives:

After completing the course, students should be able to design adaptive systems and know and apply methods for the acquisition, analysis and interpretation of data that serve as a basis for adaptivity. Furthermore, students should be able to evaluate adaptive systems in terms of usability and added value compared to non-adaptive variants.

Content:

Adaptivity is a way of making systems personalized to users - in many ways. For example, adaptivity can affect the graphical user interface of a system, which then automatically adapts to the user, but also the type and amount of content presented. The latter means a way out of the so-called "information dilemma" which has become a growing problem since the early days of the Internet. The rapidly increasing amount of available information as well as the increasing diversity of users pose new challenges to the designers and developers of the systems. A single representation is often no longer sufficient. This course deals with the basics of personalization and adaptive systems. Different aspects of adaptive systems are covered, starting with the goals of adaptivity, user modeling techniques, security aspects, and evaluation of adaptive systems. The goal of the course is to provide a holistic overview of the topic. Technical aspects as well as the user perspective will be considered. After completing the course, students should be able to design adaptive systems and know and apply methods for the acquisition, analysis and interpretation of data that serve as a basis for adaptivity. Furthermore, students should be able to evaluate adaptive systems in terms of usability and added value compared to non-adaptive variants.

Assessment: The course will be assessed by a combination of 1) a written exam at the end of the semester which contributes 66,7% to the overall result and 2) a reading assignment of topically relevant publications with the students will summarize and present in an oral exam (contributing

33,3% to the overall result). Students need to achieve at least 50% of the obtainable points in order to complete the course positively.

Prerequisites:

Students participating in the course should have basic (web) programming skills and be familiar with the basics of human-centered design (both is no strict prerequisite but recommended).
Client-Side Scripting (SCR2IL)

Degree course	KWM.ba
Course title	Client-Side Scripting
Course code	SCR2IL
Level	Bachelor
Term	SS25
Lecturer	Johannes Schönböck
Contact hours per week	3
ECTS credits	3,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

Graduates have basic knowledge in the conception, design and implementation of hypermedia applications, taking into account usability, standards compliance and progressive enhancement. The implementation is based on modern languages and tools. The focus of the course is on client-side web development with JavaScript. Students will gain a detailed insight into the basic concepts and technologies of the web, with current design trends and frameworks being scrutinized and explored using practical examples. The course consists of a lecture part and a practical part.

Content:

Introduction into Client Side Scripting

JavaScript basics

• Document Object Model (DOM)

Object-oriented programming in JavaScript

In the course, the theoratical contents are applied to concrete examples.

Prerequisites:

basic knowledge of programming

Scientific and Technical English (STE2UE)

Degree course	KWM.ba
Course title	Scientific and Technical English
Course code	STE2UE
Level	Bachelor
Term	SS25
Lecturer	Annamaria Mähr
Contact hours per week	1
ECTS credits	1
Course type	Practice-oriented session
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

In this course you will learn how to effectively deliver elevator pitches and how to talk shop proficiently. In addition, a number of grammar-related topics are covered (gerund, conditionals, adjectives).

Content:

Prepare, review and read materials for class. Carry out verbal and written assignments. Complete oral and written classroom assignments. Engage in group-, pair- and roleplay activities. Participate in discussions & give feedback when called upon. Grammar reviews. Leading a discussion. Final grammar examination.

Prerequisites:

A sound knowledge of English, a minimum of B2-level.

Web Accessibility (WAC2IL)

Degree course	KWM.ba
Course title	Web Accessibility
Course code	WAC2IL
Level	Bachelor
Term	SS25
Lecturer	Reinhard Koutny, Peter Heumader
Contact hours per week	1
ECTS credits	1
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

Accessibility of web and software systems is of crucial importance for the inclusion and participation of people with disabilities and older people (approx. 20% of the total population) in the information and knowledge society. The way web and software interfaces are designed, determines whether independent and self-directed interaction and access for people with disabilities is possible. In the information society, disability is no longer just an attribute of the individual but a quality criterion for the design of the information and communication technology (ICT)-based living environment. This requirement for the design, implementation and use of technical systems is reflected in political directives, laws and increasingly also in social and economic requirements. In addition, accessibility of web and software systems is an essential contribution to increasing usability and user experience for all people, regardless of age and/or any disabilities.

Graduates of this lecture:

- gain broad awareness of the problems and needs of people with disabilities and older people when interacting with standard hardware and websites or software systems,

- have basic knowledge about assistive technology that standard hardware and software already provide today and about specialized assistive technology (AT) that these people (can) use at the human-computer interface (HCI),

- recognize the potential of accessible user interfaces to mitigate the effects of disabilities and to improve inclusion, care, and support of people with disabilities,

- develop awareness and understanding of the need for accessibility as a basic condition for realizing this potential in inclusion and participation in all areas of life,

- gain in-depth knowledge of technical standards for accessible web and software development

- learn to use different methods, techniques and tools in the implementation of the standards,

- acquire knowledge of how these standards are implemented with different development

environments on different platforms,

- learn methods and use tools for evaluating accessibility,
- are able to independently carry out exemplary practical examples in design and programming,
- develop competencies to realize accessibility at the current state of the art, but also in the future,
- understand accessibility as an integral part of web/software engineering

Content:

- 1. Introduction:
- Objectives and overview of the lecture
- · What is accessibility and why is accessibility important.
- Overview of guidelines
- Assistive technologies and their types of interaction with user interfaces of web/software systems
- Self-experience: browsing and using ICT without screen, mouse, and keyboard; target audience.
- 2. Accessibility guidelines, their xemplary implementation and application examples
- Principle 1: Perceivability: equivalent alternatives, adaptation of content, ...
- 3. accessibility guidelines, their exemplary implementation and application examples
- Principle 2: Operability: keyboard interface, navigation, time,
- 4. accessibility guidelines, their exemplary implementation and application examples
- Principle 3: Understandability: readability, user guidance, error prevention, ...
- Principle 4: Robustness: Compatibility with AT and other user agents,
- WCAG 2.1
- 5. Accessible dynamic web and software systems: Accessible Rich Internet Applications (WAI-ARIA)
- HTML 5 Accessibility
- What is WAI-ARIA?
- ARIA elements and methods
- ARIA Examples

Prerequisites:

basic knowledge of programming

Man: Physiology (09_PHS2UE)

Degree course	MBI.ba
Course title	Man: Physiology
Course code	09_PHS2UE
Level	Bachelor
Term	SS25
Lecturer	Louise Marie Buur
Contact hours per week	1,86
ECTS credits	1,86
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Ongoing training for the lecture, practical application of the knowledge imparted in the lecture.

Prerequisites:

English 2 (21_KEN2UE)

Degree course	MBI.ba
Course title	English 2
Course code	21_KEN2UE
Level	Bachelor
Term	SS25
Lecturer	Sandra Zwirchmayr, Alastair Long
Contact hours per week	2
ECTS credits	2
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

n.a.

Content:

Primarily—but not exclusively—by means of simulations, role plays, group work, pair work, presentations, research, debates, as well as video and audio work important elements of grammar will be reviewed, technical and general vocabulary skills will be expanded, and idiomatic expressions will be introduced in order to improve each student's written and oral communication skills. Some of the areas of topicality include conflict situations, rhetorical expression, computer ethics, as well as issues in bioinformatics.

Prerequisites:

Technical English 2 (21_TEN4UE)

Degree course	MBI.ba
Course title	Technical English 2
Course code	21_TEN4UE
Level	Bachelor
Term	SS25
Lecturer	Alastair Long
Contact hours per week	1
ECTS credits	1
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

The skills acquired in the module English for Communication will be combined with those from the module Technical English to improve each student's written and oral communication skills. Each student will choose a topic from the realm of bioinformatics, create a PowerPoint presentation for it, and deliver it; this will be followed by a group discussion of the content as well as feedback for the speaker. In addition, each student will critique one presentation in writing, and the instructor will do all of them via audio or video analysis. The areas of topicality include a short review of presentation techniques, rhetorical expression, pitfalls during a presentation, and critique writing.

Prerequisites:

Digital Imaging / Visual Computing (05_DVC4IL)

Degree course	MTD.ba
Course title	Digital Imaging / Visual Computing
Course code	05_DVC4IL
Level	Bachelor
Term	SS25
Lecturer	David Christian Schedl
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	4

Learning objectives:

n.a.

Content:

Students learn basic processes and techniques from digital image processing and computer vision. In addition to the theoretical understanding, students also acquire practical skills in implementing and applying algorithms and software that are used, for example, in deep learning, robotics, medicine, biology, astronomy, and media production.

Requirements

General interest in image processing and a basic math understanding.

Prerequisites:

Embodied Play (05_EMP4IL)

Degree course	MTD.ba
Course title	Embodied Play
Course code	05_EMP4IL
Level	Bachelor
Term	SS25
Lecturer	Michael Lankes, Martin Kocur
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	6

Learning objectives:

n.a.

Content:

Introduction, basic concepts and forms of embodied play (natural forms of interaction in games: eye interaction, facial expressions, gestures, positioning and representation of the players). Technical basics and functionality of required hardware (eye tracker, laser ranger etc.). Conception and prototypical implementation of a playful prototype in groups. Evaluation of the results in the form of playtests and heuristic evaluations.

Prerequisites:

Interaction and Game Programming (05_IGP4IL)

Degree course	MTD.ba
Course title	Interaction and Game Programming
Course code	05_IGP4IL
Level	Bachelor
Term	SS25
Lecturer	Andreas Ernst Riegler
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	4

Learning objectives:

n.a.

Content:

In this course, we will discuss and apply the following three principles:

Exertion: Inclusion of body movement (i.e., gestures, activities, sequences) into games, play, and simulation. How can we create experiences that make our users exhausting themselves with joy? Integration: Waiving the boundaries between users and technology. How can we create experiences that make people believe being an entity with technological artifacts?

Al and machine learning in games: How can we make our game actors self-learn and optimize behavior? For this part, there is no fundamental knowledge of Al and math needed.

Grading: In group projects, we will develop experiences that foster on at least one of the above mentioned areas.

Requirements

General interest into gameful experiences or simulation beyond classical games. Basic knowledge of Unity and/or Unreal assumed.

Prerequisites:

Mixed Reality (05_MIR4IL)

Degree course	MTD.ba
Course title	Mixed Reality
Course code	05_MIR4IL
Level	Bachelor
Term	SS25
Lecturer	Dominik Hackl, Georgi Yordanov Kostov, Jeremiah Diephuis
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	6

Learning objectives:

n.a.

Content:

Introduction to technologies and production processes for mixed reality applications. Fusion of the acquired knowledge from the courses "Game Programming" and "3D Design" with special attention to possibilities of performance optimization. Insight into the use of MR technologies for motion capture and other purposes. Design and prototype development of an interactive MR application (game, installation, etc.).

Prerequisites:

Online Multimedia (05_ONM4IL)

Degree course	MTD.ba
Course title	Online Multimedia
Course code	05_ONM4IL
Level	Bachelor
Term	SS25
Lecturer	Rimbert Rudisch-Sommer
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	4

Learning objectives:

n.a.

Content:

In-depth contents in Hypermedia Programming, such as:

TypeScript React State Management (eg Redux) Functional and Reactive Programming Concepts (eg RxJS) Media-APIs (eg WebRTC, Streaming) Laravel

Prerequisites:

Special Topic 3D (05_S3D4IL)

Degree course	MTD.ba
Course title	Special Topic 3D
Course code	05_S3D4IL
Level	Bachelor
Term	SS25
Lecturer	Marius David Oelsch
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	4

Learning objectives:

n.a.

Content:

Rigging is the foundation of all kind of manually animated sequences, from pretty simple rigs to quite complex full creature rigs. This course discusses different types of rigging for animation in Blender. Other than a bit of theory up front the course will mostly be in practical examples and exercises.

Prerequisites:

Software Study Project 1 (20_SPR4PT)

Degree course	SE.ba
Course title	Software Study Project 1
Course code	20_SPR4PT
Level	Bachelor
Term	SS25
Lecturer	Oliver Zauner
Contact hours per week	4
ECTS credits	4
Course type	Project
Examinations	continuous assessment
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Realisierung des ersten Teils eines umfangreichen Projekts mit realem Auftraggeber (aus Industrie/Wirtschaft oder Forschung) im Team, Durchlaufen definierter Projektphasen, Üben der Vorgehensmethoden und -modelle sowie der Erstellung aller relevanten Projekt(prozess)dokumente und Produktdokumente.

Prerequisites:

Grundlagen des Projekt Engineering (SPE, SPR), Programmierung und Algorithmen (PRO, AUD), Sozialkompetenz (SKE) und BWL

Human Aspects of Information Security (HIS4IL)

Degree course	SIB.ba
Course title	Human Aspects of Information Security
Course code	HIS4IL
Level	Bachelor
Term	SS25
Lecturer	Marcus Nohlberg
Contact hours per week	2
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives: The students will learn:

Foundations of:

- Information Security Awareness
- How to create Security Awareness materials
- How to create Security Awareness campaigns
- How to present security materials
- Basics of research within the human

Content:

Basics of human behaviour in the context of information security, subjective assessment of risks and threats, effectiveness of policies and regulations, overt and covert avoidance behaviour, basic concepts and examples of security awareness training.

Prerequisites:

Social Engineering (SEN2IL)

Degree course	SIB.ba
Course title	Social Engineering
Course code	SEN2IL
Level	Bachelor
Term	SS25
Lecturer	Marcus Nohlberg
Contact hours per week	2
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives: The students will learn:

Foundations of:

- Social Engineering
- The Human Element of Security
- · Socio-psychological aspects related to Information Security
- Gow to structure work on preventing Social Engineering
- The fundamentals of research within the human element

Content:

Psychological basics of manipulation and influence, mechanisms and basic patterns of social engineering attacks and scams, possibilities of recognising and avoiding such attacks.

Prerequisites:

Distributed and Parallel Software Systems (09_VPS5VO)

Degree course	SE.ba
Course title	Distributed and Parallel Software Systems
Course code	09_VPS5VO
Level	Bachelor
Term	SS25
Lecturer	Bogdan Burlacu
Contact hours per week	1
ECTS credits	1
Course type	Lecture
Examinations	written examination
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Einführung in die Entwicklung paralleler und verteilter Programme (Motivation, Anwendungsgebiete, Moore's Gesetz, TOP500 Liste), Theoretische Grundlagen (Speed Up, Effizienz, Amdahls Gesetz, Gustafsons Gesetz, Konsequenzen), Überblick über parallele Hardwarearchitekturen (Flynns Taxonomy, Pipelining, Shared Memory Systeme, Distributed Memory Systeme), Herausforderungen beim Erstellen nebenläufiger Programme (Deadlocks, Livelocks, Race Conditions, Overhead, Synchronisation), Entwicklung nebenläufiger bzw. paralleler Applikationen für .NET, OpenMP

Prerequisites:

WEB2

Computational Intelligence II (0_2CO2U)

Degree course	DSE.ma
Course title	Computational Intelligence II
Course code	0_2CO2U
Level	Master
Term	SS25
Lecturer	Stephan Winkler, Ulrich Bodenhofer, Sebastian Dorl
Contact hours per week	1
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Concurrent exercises, practical applications of the theoretical lecture contents.

Prerequisites:

Computational Intelligence II (0_2CO2V)

Degree course	DSE.ma
Course title	Computational Intelligence II
Course code	0_2CO2V
Level	Master
Term	SS25
Lecturer	Stephan Winkler, Ulrich Bodenhofer, Sebastian Dorl
Contact hours per week	2
ECTS credits	3
Course type	Lecture
Examinations	oral or written examination
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Theoretical part:

- Differentiation between numerical and heuristic optimization
- Taxonomy of heuristic optimization methods
- Examples of combinatorial optimization problems and complexity theory
- Solution space behavior and P and NP problems
- Heuristic methods (overview): Problem-specific methods vs. metaheuristics
- Construction vs. improvement heuristics
- Proximity and distance of solutions
- Local search
- Genetic Algorithms (GA)
- Evolution strategies
- Genetic Programming (GP)
- Symbolic regression and symbolic classification

• Basics of support vector machines: linear SVM, soft-margin SVM, non-linear SVMs and the kernel trick

- SVMs for classification of biological sequences
- Multi-class SVM and support vector regression
- History and basics of neural networks
- The backpropagation algorithm
- Tips and tricks for the practical use of neural networks
- Deep learning fundamentals: vanishing gradients, pre-training, alternative activation functions,

drop-out

• Convolutional neural networks: basics, transfer learning with the help of pre-trained networks, object recognition

• Recurrent neural networks and Long Short-Term Memory (LSTM) and their application in sequence and language processing

- Basic idea of Generative Adversarial Networks (GANs), Neural Style Transfer
- Deep fakes

Practical part:

- Development and use of evolutionary algorithms to solve different problems
- Implementation of evolutionary algorithms to solve different problems

• Use of data processing pipelines: data cleaning, feature definition & extraction, model selection, tuning, results analysis

• Use of regression and classification algorithms to solve different data mining tasks

• Use of different methods to find a solution and combination of methods (data preprocessing,

clustering, classification / regression)

• Use of existing frameworks (HeuristicLab, MATLAB, Python packages) and implementation of own preprocessing methods

• Involvement of students in research projects of the research groups Heuristic and Evolutionary Algorithms (HEAL) and Bioinformatics (BIN)

- Use of linear and non-linear support vector machines for classification and regression
- Hyperparameter selection for SVMs using grid Search
- Use of classic neural networks for the classification of vectorial data
- Hyperparameter selection for neural networks using random search
- Use of convolutional neural networks for image classification
- Use of pre-trained convolutional neural networks for image classification
- Use of a simple GAN architecture to generate image data

Prerequisites:

Modelling and Simulation (0_MOS2U)

Degree course	DSE.ma
Course title	Modelling and Simulation
Course code	0_MOS2U
Level	Master
Term	SS25
Lecturer	Stephan Winkler, Elisabeth Maria Mayrhuber
Contact hours per week	1
ECTS credits	2
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

In the practical part of this course the contents presented in the lectures are implemented using software frameworks MATLAB/Simulink and AnyLogic.

Prerequisites:

Modelling and Simulation (0_MOS2V)

Degree course	DSE.ma
Course title	Modelling and Simulation
Course code	0_MOS2V
Level	Master
Term	SS25
Lecturer	Stephan Winkler, Elisabeth Maria Mayrhuber
Contact hours per week	2
ECTS credits	3
Course type	Lecture
Examinations	oral or written examination
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

The following topics are addressed in the lectures: Basics of modeling, linear and nonlinear systems, continuous and discrete modeling and simulation, modeling of biological systems and processes; deterministic simulations and stochastic simulations; Monte Carlo methods; population dynamics; predator prey models; models for the progress of epidemical diseases; compartment models: pharmakokinetiks, one-compartment-models, two-compartment-models, kinetiks of insulin; analysis of biosystems: haemodynamics, cardiovascular systems simulations; controlled systems; gas exchange models in lungs; classification of models and computer simulations.

Prerequisites:

Hypermedia Frameworks (HMF2IL)

Degree course	IM.ma
Course title	Hypermedia Frameworks
Course code	HMF2IL
Level	Master
Term	SS25
Lecturer	Rimbert Rudisch-Sommer
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	4

Learning objectives:

Students have gained an understanding of the principles of modern hypermedia application architectures with a focus on server-side application layers with different platforms. The students are able to select the most suitable tools for the respective application purpose from the multitude of existing and emerging tools and to use them correctly.

Content:

Architectures of Hypermedia Applications, Server-Side Frameworks (e.g. Spring Framework, Ruby on Rails, Play Framework), Rapid Application Development, Reactive Programming, Web Services, REST, Persistence Libraries.

Prerequisites:

Basic Knowledge in HTML, CSS, JavaScript and object oriented programming (eg Java) in general.

Information Visualization (IVI2IL)

Degree course	IM.ma
Course title	Information Visualization
Course code	IVI2IL
Level	Master
Term	SS25
Lecturer	Mandy Keck, Holger Stitz
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

The course consists of a theoretical and a practical part. While the theoretical part serves as a basic introduction to information visualization, a practical project offers the opportunity to apply and deepen this knowledge.

Theory: Definition of information visualization, role of visualization in data analysis, reference model of visualization, data types and structures, visual perception and visual variables, visualization and interaction techniques, narrative visualizations (storytelling), presentation of common visualization libraries.

Prerequisites:

Software Design Methods (SDM2IL)

Degree course	IM.ma
Course title	Software Design Methods
Course code	SDM2IL
Level	Master
Term	SS25
Lecturer	Hans Prüller
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Modern Software Architectures and Methods of System Design, Modeling- and Design-Patterns, Development Environments, Test-cases, Use-cases, Performance vs. Elegance.

Prerequisites:

Basic experience in conducting Software Projects, object oriented programming (eg Java) in general.

Intercultural Online Collaboration (KWM510)

Degree course	KWM.ma
Course title	Intercultural Online Collaboration
Course code	KWM510
Level	Master
Term	SS25
Lecturer	Martina Gaisch
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

Graduates know the necessary basics of multicultural and virtual teamwork and are familiar with theories and core concepts of intercultural competence. They are able to apply the acquired knowledge in the use and design of technology-supported environments. They use common tools and are aware of the socio-cultural processes that take place within distributed teams in organizations. They use media in a context-sensitive and needs-oriented manner and excel at professional communication in an intercultural environment. On the basis of the intercultural competencies acquired, graduates are able to work in such settings in a manner appropriate to the situation. They are able to develop community concepts and to establish and manage (online) communities.

Content:

This module elaborates on intercultural theories that are predominant on a macro-level and discusses possible implications and cross-border interactions between individuals of different societal backgrounds. It is further discussed how globalization and internationalization endeavors encourage intercultural cooperation and what prerequisites are required for virtual teamwork across nations. Several hands-on examples are provided and critical intercultural incidents can be experienced, discussed and reflected upon throughout cross-border cooperation.

Prerequisites:

-

Leadership (KWM531)

Degree course	KWM.ma
Course title	Leadership
Course code	KWM531
Level	Master
Term	SS25
Lecturer	Julia Zuber
Contact hours per week	1,5
ECTS credits	2,5
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	4

Learning objectives:

The course explores leadership-related topics (e.g., leadership success, leadership personality, leadership style) from a psychological perspective. It covers key psychological theories and findings and their application in the context of leadership behavior. Additionally, methodological skills are expanded, and scientific articles are analyzed, reflected upon, and communicated in an accessible manner.

Content:

• Leadership and Leadership Success: What is leadership and leadership success? How can leadership success be measured, and why is its measurement challenging?

• Leaders: What characteristics define effective leaders? To what extent are leadership traits associated with leadership success?

• Leadership Behavior: How can leaders' behavior be categorized? What types of leadership behavior are associated with aspects of leadership success?

• Employees: What forms of influence can employees use to impact leaders?

Ethical Leadership: What are the "bright and dark" sides of leadership? What are the advantages and disadvantages of shared leadership? What are the consequences of "dark" leadership?
A key feature of leadership research is its practical relevance, as well as its empirical research methodology and the communication of findings in international academic journals. In light of the existing research-practice gap, the course also emphasizes reading, understanding, and effectively summarizing English-language empirical research articles in an accessible manner.

Grading:

• Active Participation and Attendance, particularly in the development of the Leadership Board.

- Written Exam (70%)
- Development of a Scholarly Article in the Form of Interviews: In teams. research scientific articles

from peer-reviewed journals on a topic of interest. The articles can be empirical, theoretical, or review-based. Present the content of the article in the form of an interview. (30% of the grade) • Or: Development of Behavioral Options for Leaders: In small groups, create behavioral options for leaders based on the theoretical concepts learned in the course. These options will be presented and discussed through role-plays to simulate real-world scenarios. (30% of the grade) • Students may choose between the two options (Article or Behavioral Options) for the 30% component

Prerequisites:

According to the prerequisites for degree program access.

Data Mining and Machine Learning (15_DML2ILV)

Degree course	SE.ma
Course title	Data Mining and Machine Learning
Course code	15_DML2ILV
Level	Master
Term	SS25
Lecturer	Michael Affenzeller
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Overview of characteristic data mining problems, categorization of problems, complexity of hypothesis spaces, overfitting, underfitting, use of training validation and test data, cross-validation Find-S and Candidate Elimination algorithms, Decision Trees, Case-based Learning, Rule-Based learning, ensemble techniques.

Genetic Programming, symbolic regression, symbolic classification.

Exercise part: Use of the different machine learning algorithms on the basis of data sets from practice as well as benchmark data sets; training in the use of the Data Mining functionalities of HeuristicLab.

Prerequisites:

Entsprechend den Zugangsvoraussetzungen des Studiengangs

Generative Programming (22_GEP2VO)

Degree course	SE.ma
Course title	Generative Programming
Course code	22_GEP2VO
Level	Master
Term	SS25
Lecturer	Stefan Wagner
Contact hours per week	2
ECTS credits	3
Course type	Lecture
Examinations	written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Motivation and idea of generative programming (" ... manufacturing software in an automated way ..."); overview of methods and techniques of generative programming; detailed discussion of particularly important and/or current approaches such as templates, generic programming, dynamic languages, static metaprogramming (e.g., in C++) and dynamic metaprogramming based on metainformation (e.g., in C# or Java with reflection). Aspect-oriented programming (AOP) with tools that allow static and dynamic weaving of aspects; domain engineering; domain specific languages and architectures; feature modeling; software product lines (in conjunction with AOP); generators and frameworks for generators.

Prerequisites:

Vor allem aus Modul FCW

Artificial Intelligence (22_KIN2ILV)

Degree course	SE.ma
Course title	Artificial Intelligence
Course code	22_KIN2ILV
Level	Master
Term	SS25
Lecturer	Stephan Dreiseitl, Erik Pitzer
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	German
Places for international students	2

Learning objectives:

n.a.

Content:

Structure of intelligent systems, search algorithms, heuristics, constraint satisfaction problems, propositional logic and predicate logic as languages of knowledge representation and inference, planning algorithms, knowledge representation and inference in stochastic systems using Bayesian networks and Markov chains, optimal action selection in deterministic and stochastic environments through reinforcement learning.

Prerequisites:

Entsprechend den Zugangsvoraussetzungen des Studiengangs

Data Preprocessing and Analytics (17_DVA2I)

Degree course	HCC.ma
Course title	Data Preprocessing and Analytics
Course code	17_DVA2I
Level	Master
Term	SS25
Lecturer	Bogdan Burlacu
Contact hours per week	2
ECTS credits	3
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

- develop a conceptual understanding of the basic tools in data science
- learn how to summarize data, how to prepare data
- learn about the data science pipeline within the bigger context of Machine Learning
- learn about algorithms used in data science (e.g., clustering, dimensionality reduction)
- learn about statistical analysis (significance, confidence intervals)

Content:

- Introduction to data
- Descriptive data summarization
- Cluster analysis
- Dimensionality reduction
- Feature selection and feature extraction
- Statistical inference

Prerequisites:

Prior knowledge:

- basic math and statistics concepts
- linear algebra
- basic understanding of algorithms

Artificial Intelligence 1 (24_KIN2 I)

Degree course	IEM.ma
Course title	Artificial Intelligence 1
Course code	24_KIN2 I
Level	Master
Term	SS25
Lecturer	Bogdan Burlacu
Contact hours per week	2
ECTS credits	3,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Basic concepts of machine learning Unsupervised vs. supervised learning Case-based learning vs. rule-based learning Supervised learning: classification and regression Decision tree learning: ID3 algorithm pruning Overfitting and Bias-Variance Tradeoff Model selection Bagging and Boosting: Random Forest, Gradient Boosting

Prerequisites:

Cross Cultural Business Communication (CCC2ILV)

Degree course	ISM.ma
Course title	Cross Cultural Business Communication
Course code	CCC2ILV
Level	Master
Term	SS25
Lecturer	Martina Gaisch
Contact hours per week	1,5
ECTS credits	3
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Theories and core concepts of intercultural communication processes, intercultural negotiation with accompanying reflection,

Examples and experiences from practical application areas, exercises for the further development of generic key competences. Intercultural negotiation and dialogue skills are practised and analysed on the basis of several case studies.

Prerequisites: