

Course Offer

for Incoming Exchange Students

School of Informatics, Communications and Media

fh-ooe.at/en/hagenberg-campus

Bachelor's Degree Programme

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Automotive C	omputing (Bac	helor, Hagenberg Campus)					
AC.ba	ALD3 U	Algorithms and Data Structures	Practice- oriented session	3	Bachelor	3	5
AC.ba	ALD3 V	Algorithms and Data Structures	Lecture	3	Bachelor	2	6
AC.ba	VIS3 U	Distributed Information Systems	Practice- oriented session	3	Bachelor	3	7
AC.ba	VIS3 V	Distributed Information Systems	Lecture	3	Bachelor	2	8
School of Info	ormatics, Comm	nunications and Media (Bachelor, Hag	enberg Camp	us)			
FHHGB	AIC1IL_INT	Al in Creativity	Integrated course	1	Bachelor	5	9
FHHGB	CDF1IL_INT	Computer Design and Firmware Programming	Integrated course	1	Bachelor	5	11
FHHGB	DEU1IL_INT	German for Beginners	Integrated course	1	Bachelor	2	12
FHHGB	DEU2IL_INT	German for Beginners with Prior Knowledge	Integrated course	1	Bachelor	2	13
FHHGB	MAD1IL_INTIL	Mobile App Development	Integrated course	1	Bachelor	5	14
FHHGB	SEM1PR_INT2P T	Semester project	Project	1	Bachelor	10	15
Hardware-Sof	tware-Design (Bachelor, Hagenberg Campus)					
HSD.ba	EKI5-17ILV	Introduction to Artificial Intelligence	Integrated course	5	Bachelor	2,5	16
HSD.ba	ENG1-17ILV	English 1	Integrated course	1	Bachelor	2	17
HSD.ba	ENG3-17ILV	English 3	Integrated course	3	Bachelor	1,5	18
HSD.ba	GID3ILV	Source Code Management using Git	Integrated course	3	Bachelor	0,5	19
HSD.ba	GIV3ILV	Version & Release Management using Git	Integrated course	3	Bachelor	0,5	20
Communication	on and Knowle	dge Media (Bachelor, Hagenberg Carr	npus)				
KWM.ba	COM1UE	Communication in the New Media Age	Practice- oriented session	1	Bachelor	1	21

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Communication and Knowledge Media (Bachelor, Hagenberg Campus)							
KWM.ba	IDP3VO	Interaction Design and Prototyping	Lecture	3	Bachelor	2	22
KWM.ba	PRE3UE	Presentation Skills for Knowledge Transfer	Practice- oriented session	3	Bachelor	1	23
Medical and B	bioinformatics ((Bachelor, Hagenberg Campus)					
MBI.ba	09_GBC1UE	Biological and Chemical Basics	Laboratory session	1	Bachelor	1	24
MBI.ba	21_ALG5ILV	Bioinformatics Algorithms	Integrated course	5	Bachelor	2,5	25
MBI.ba	21_KEN1UE	English 1	Practice- oriented session	1	Bachelor	2	26
MBI.ba	21_MAL5UE	Machine Learning and Data Mining	Practice- oriented session	5	Bachelor	1,5	27
MBI.ba	21_MAL5VO	Machine Learning and Data Mining	Lecture	5	Bachelor	1	28
MBI.ba	21_TEN3UE	Technical English 1	Practice- oriented session	3	Bachelor	1	29
MBI.ba	21_TEN5UE	Technical English 3	Practice- oriented session	5	Bachelor	1	30
Mobile Compu	uting (Bachelo	r, Hagenberg Campus)					
MC.ba	5_VIS3 U	Distributed Information Systems	Practice- oriented session	3	Bachelor	3	31
MC.ba	5_VIS3 V	Distributed Information Systems	Lecture	3	Bachelor	2	32
Media Techno	logy and Desig	gn (Bachelor, Hagenberg Campus)					
MTD.ba	05_GWP5IL	Games with a Purpose	Integrated course	5	Bachelor	5	33
MTD.ba	05_ISY5IL	Intelligent Systems	Integrated course	5	Bachelor	5	34

Master's Degree Programme

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Data Science	and Engineerir	ng (Master, Hagenberg Campus)					
DSE.ma	0_1CO1U	Computational Intelligence I	Practice- oriented session	1	Master	2	35
DSE.ma	0_1CO1V	Computational Intelligence I	Lecture	1	Master	3	36
DSE.ma	0_NUM1U	Numerical Methods	Practice- oriented session	1	Master	2	37
DSE.ma	0_NUM1V	Numerical Methods	Lecture	1	Master	3	38
Interactive Me	edia (Master, Ha	agenberg Campus)					
IM.ma	GDE1IL	Game Development	Integrated course	1	Master	5	39
IM.ma	HUX1IL	Hypermedia UX Engineering	Integrated course	1	Master	5	40
IM.ma	IME3IL	Intelligent Media	Integrated course	3	Master	5	41
IM.ma	RTG1IL	Real Time Graphics	Integrated course	1	Master	5	42
IM.ma	SCO3IL	Spatial Computing	Integrated course	3	Master	5	43
IM.ma	STO1IL	Special Topic: Design for Physical Prototyping	Integrated course	1	Master	5	44
Software Eng	ineering (Maste	er, Hagenberg Campus)					
SE.ma	15_DWO1ILV	Data Warehousing, OLAP and Business Intelligence	Integrated course	1	Master	5	45
SE.ma	15_HEA1ILV	Heuristic and Evolutionary Algorithms	Integrated course	1	Master	5	46
SE.ma	15_MSM1ILV	Modelling and Simulation	Integrated course	1	Master	5	47
SE.ma	15_WIA3SE	Scientific Work	Seminar	3	Master	1	48
SE.ma	22_BDV3ILV	Big Data Analytics and Interactive Visualization	Integrated course	3	Master	5	49
SE.ma	22_NDL3ILV	Neural Networks and Deep Learning	Integrated course	3	Master	5	50

Programme (department)	Course unit code	Course unit title	Course type	Semester (level)	Level	ECTS	Page
Human-Cente	Human-Centered Computing (Master - Part Time, Hagenberg Campus)						
HCC.ma	17_INT3I	Intercultural Negotiation	Integrated course	3	Master	1,5	51
Information E	ngineering and	-Management (Master - Part Time, Ha	agenberg Carr	npus)			
IEM.ma	20_BEC3 T	Business English Communication Skills	Individual Training	3	Master	1	52
IEM.ma	20_ICC3 I	Intercultural Communication	Integrated course	3	Master	2	53
Information S	ecurity Manage	ement (Master - Part Time, Hagenberg	Campus)				
ISM.ma	CCC1IL	Cross Cultural Business Communication	Integrated course	1	Master	1	54
ISM.ma	LAN1ILV	Language 1	Integrated course	1	Master	1	55
ISM.ma	SAW3ILV	Security Awareness	Integrated course	3	Master	3	56

Algorithms and Data Structures (ALD3 U)

Degree course	AC.ba
Course title	Algorithms and Data Structures
Course code	ALD3 U
Level	Bachelor
Term	WS24/25
Lecturer	Marc Kurz, Stephan Selinger
Contact hours per week	2,4
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Focus on algorithms and data structures. Specification of algorithms; Complex dynamic data structures (trees, graphs),

standard algorithms (search, sorting, dynamic search trees, hashing methods), iterative methods (conversion of sum expressions),

recursive algorithms, elementary graph algorithms, calculation models and complexity measures. In the area of concrete applications, data formats for geodata (OGC SFS, GDF,...) are treated as well as path data-graphs and routing algorithms.

Prerequisites:

For exchange students: you have to take both, the lecture and practice orientated session, in order to receive ECTS for it (5 ECTS in total)

Algorithms and Data Structures (ALD3 V)

Degree course	AC.ba
Course title	Algorithms and Data Structures
Course code	ALD3 V
Level	Bachelor
Term	WS24/25
Lecturer	Marc Kurz, Stephan Selinger
Contact hours per week	1,6
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Focus on algorithms and data structures. Specification of algorithms; Complex dynamic data structures (trees, graphs),

standard algorithms (search, sorting, dynamic search trees, hashing methods), iterative methods (conversion of sum expressions),

recursive algorithms, elementary graph algorithms, calculation models and complexity measures. In the area of concrete applications, data formats for geodata (OGC SFS, GDF,...) are treated as well as path data-graphs and routing algorithms.

Prerequisites:

For exchange students: you have to take both, the lecture and practice orientated session, in order to receive ECTS for it (5 ECTS in total)

Distributed Information Systems (VIS3 U)

Degree course	AC.ba
Course title	Distributed Information Systems
Course code	VIS3 U
Level	Bachelor
Term	WS24/25
Lecturer	Jens Krösche
Contact hours per week	2,4
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

Basic practical exercises:

* Client / server communication via TCP / UDP sockets (C++ / Java) using multithreading and taking into account the corresponding synchronization mechanisms

* Remote Method Invocation via Java RMI

* Web Services based on Java-supported REST APIs

* Data Transformation XML / JSON based on Java's JAXB

Content:

The lecture covers the basic theoretical and practical topics regarding client / server communication in today's omnipresent distributed software systems.

Prerequisites:

According to the prerequisites for degree program access

Distributed Information Systems (VIS3 V)

Degree course	AC.ba
Course title	Distributed Information Systems
Course code	VIS3 V
Level	Bachelor
Term	WS24/25
Lecturer	Jens Krösche
Contact hours per week	1,6
ECTS credits	2
Course type	Lecture
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Basic practical exercises:

* Client / server communication via TCP / UDP sockets (C++ / Java) using multithreading and taking into account the corresponding synchronization mechanisms

* Remote Method Invocation via Java RMI

* Web Services based on Java-supported REST APIs

* Data Transformation XML / JSON based on Java's JAXB

Content:

The lecture covers the basic theoretical and practical topics regarding client / server communication in today's omnipresent distributed software systems.

Prerequisites:

According to the prerequisites for degree program access

Al in Creativity (AIC1IL_INT)

Degree course	FHHGB
Course title	AI in Creativity
Course code	AIC1IL_INT
Level	Bachelor
Term	WS24/25
Lecturer	Alexander Schurr
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

• Understand the fundamentals of creativity and its different dimensions, including artistic, scientific, and technological.

• Learn the basics of AI and its different applications in the field of creativity, including generative art, music composition, and storytelling.

• Explore the ethical and social implications of using AI to create art and other forms of creative output and develop a critical perspective on the role of technology in creativity.

• Analyse case studies and real-world examples of Al-generated art and creative works, and evaluate their aesthetic, technical, and emotional qualities.

• Develop practical skills in using AI tools and techniques to generate creative output, including using neural networks, machine learning algorithms, and other computational tools.

Content:

Introduction to Creativity and AI

- The concept of creativity and its various dimensions
- What is AI? Types of AI and its applications in different domains
- The intersection of creativity and AI: past, present, and future
- AI in Creative Fields
- · Generative art: algorithms and techniques for creating art with AI
- · Music composition: using AI for generating music and exploring new genres
- Storytelling: AI tools for generating narratives, plotlines, and characters

Ethical and Social Implications

- · Bias in AI and its impact on creative work
- Ownership and copyright of Al-generated content
- The role of AI in changing the creative process and the meaning of "art"

Collaboration and Co-creation

- Human-Al interaction in the creative process
- Integrating AI-generated output with human creativity
- Case studies of successful collaborations and co-creation projects Hands-on Practice
- Experimentation with AI tools and techniques for creative output
- Project-based learning: creating an AI-generated art, music, or storytelling project
- Feedback and critique sessions
- Future of Creativity and AI
- The impact of AI on the creative industries and professions
- Potential new forms of creative expression with AI
- Ethical and social considerations for the future of AI in creativity

Prerequisites:

None

Computer Design and Firmware Programming (CDF1IL_INT)

Degree course	FHHGB
Course title	Computer Design and Firmware Programming
Course code	CDF1IL_INT
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	10

Learning objectives:

Knowing the structure and basic functioning of a simple CPU (Central Processing Unit) Understanding the relationship between hardware structure, time sequences and programmability in machine and assembly language Hardware-near programming and handling of a modern ARM microcontroller platform Ability to program peripherals of microcontrollers

Content:

Introduction to computer architecture: RISC/CISC, control unit (FSM, micro-programmed) and datapath

CPU-Microarchitecture: structure and timing models, working through the design of a simple CPU Introduction to the ARM assembly programming language: instruction classes, command architecture, addressing modes, hands-on lab on ARM assembly basics Programming of ARM-Microcontrollers in C and assembly language, macro programming, inline assembly, use of libraries, compiler directives

Prerequisites:

Foundations of Digital Design (combinational and sequential circuits, Finite State Machines), Basic skills in programming

German for Beginners (DEU1IL_INT)

Degree course	FHHGB
Course title	German for Beginners
Course code	DEU1IL_INT
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	1,6
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	10

Learning objectives: n.a.

Content:

n.a.

Prerequisites:

none

German for Beginners with Prior Knowledge (DEU2IL_INT)

Degree course	FHHGB
Course title	German for Beginners with Prior Knowledge
Course code	DEU2IL_INT
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	1,6
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	10

Learning objectives:

n.a.

Content:

n.a.

Prerequisites:

Basic knowledge in german

Mobile App Development (MAD1IL_INTIL)

Degree course	FHHGB
Course title	Mobile App Development
Course code	MAD1IL_INTIL
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	4
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Activity, Resources, View/Layout/Interaction, Context, Sensors, Manifest, Intent, Notification, Inter-Component Communication, Lists, Fragments, AppBar, UI-Navigation and Preferences

Prerequisites:

Decent knowledge in OO programming in Java or alike is necessary.

Semester project (SEM1PR_INT2PT)

Degree course	FHHGB
Course title	Semester project
Course code	SEM1PR_INT2PT
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	1
ECTS credits	10
Course type	Project
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

Working in a team on a specific topic, where you fulfill most of the prerequisites of the project.

Content:

Define Milestones and a final goal of the project. Write a project report at the end including your definded milestones. Report problems and argue why you have chosen which technology and how you solved upcoming problems

The Prerequisites depend on the project you have chosen. For a web project for example HTML, CSS.

javascript, PHP and MySQL

Prerequisites:

The Prerequisites depend on the project you have chosen. For a web project for example HTML, CSS,

javascript, PHP and MySQL.

Introduction to Artificial Intelligence (EKI5-17ILV)

Degree course	HSD.ba
Course title	Introduction to Artificial Intelligence
Course code	EKI5-17ILV
Level	Bachelor
Term	WS24/25
Lecturer	Dietmar Millinger
Contact hours per week	2
ECTS credits	2,5
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Definition and Context of AI

Machine Learning

Life cycle of Machine Learning Projects

The goal of the class is to provide actionable knowledge about the basic principles and structures as well as

functions of applied AI systems. This class has a focus on machine learning. With this knowledge the

student shall be able to select and integrate AI modules into larger software systems. Therefore the students

learn about a number of common AI modules, their functions and their interfaces. A special focus lies in the

life cycle of machine learning projects from proof of concept to production situations and the use of frameworks in production projects. In the practical part, 6 exercises are implemented in python on jupyter

notebooks and strategies for improvement of the results are developed.

Prerequisites:

English 1 (ENG1-17ILV)

Degree course	HSD.ba
Course title	English 1
Course code	ENG1-17ILV
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	2
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Grammar is refreshed and deepened, subject-specific or everyday vocabulary is expanded, and important phrases and idioms are conveyed to improve written and oral expression. Topics include, among others, application documents, job interviews, as well as current technical topics.

Prerequisites:

English 3 (ENG3-17ILV)

Degree course	HSD.ba
Course title	English 3
Course code	ENG3-17ILV
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	2
ECTS credits	1,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Further and more elaborate sharpening of subject-specific or everyday vocabulary; important phrases and idioms are taught to achieve an improvement in both written and oral expression.

Prerequisites:

Source Code Management using Git (GID3ILV)

Degree course	HSD.ba
Course title	Source Code Management using Git
Course code	GID3ILV
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	0,5
ECTS credits	0,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	1

Learning objectives:

- Get an understanding of version control systems
- Get a basic understanding of the Git command line
- Learn what a Git repository is and how to use it
- · Learn what a Git commit graph is and how to interpret it
- Learn and apply the basic Git workflows
- Understand the benefits of using a version control system in a team

Content:

• Introduction: Why use a version control system? What is needed to get started with Git?

• How Git works:

Repository, Working Directory, Staging Area/Index, Commit, Remote, Refs (Branch/Tag/HEAD), Commit-Graph

- Important Commands: init/clone, checkout, add/reset/commit, push/pull, branch/tag
- Merging & Merge-Conflicts (Merge-Commit): Step by step

Prerequisites:

Version & Release Management using Git (GIV3ILV)

Degree course	HSD.ba
Course title	Version & Release Management using Git
Course code	GIV3ILV
Level	Bachelor
Term	WS24/25
Lecturer	
Contact hours per week	0,5
ECTS credits	0,5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	2

Learning objectives:

- Get a deeper understanding of how Git handles and represents commits and branches
- Get a deeper understanding of Git merge strategies and their benefits/drawbacks
- Understand how branches can be used to maintain multiple versions of an application
- Learn and apply how feature branches can be used to work on a shared code base in a team
- Understand common CI/CD concepts and how they relate to Git
- Learn and apply which commands should and should not be used for automation

Content:

• Analyzing Commits: Is a commit part of a specific branch? Is a branch fully merged into another branch? Compare branches

- Merging: Rebase, Cherry-Picking
- Branching Models (Single main branch, Version branches, Feature branches
- Using the stash
- Referencing other repositories: Submodules, Subtrees, Forks
- Automation: CI/CD, Repository Hooks, Plumbing vs. Porcelain commands

Prerequisites:

Communication in the New Media Age (COM1UE)

Degree course	KWM.ba
Course title	Communication in the New Media Age
Course code	COM1UE
Level	Bachelor
Term	WS24/25
Lecturer	Annamaria Mähr
Contact hours per week	1
ECTS credits	1
Course type	Practice-oriented session
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Broadening and revision of English communication skills.

Content:

The content of the course is a targeted deepening, broadening and refreshing of English language skills in the areas of grammar, subject-specific and general vocabulary, context-appropriate written and oral expression through role plays, group work, work in pairs, research, debates, as well as video and audio work etc. The subject areas should be related to specialized topics of the course or to topics of the social competence lecture held in the respective semester (e.g. context-adequate conversation in various everyday and professional situations).

Prerequisites:

A sound knowledge of English, a minimum of B2-level.

Interaction Design and Prototyping (IDP3VO)

Degree course	KWM.ba
Course title	Interaction Design and Prototyping
Course code	IDP3VO
Level	Bachelor
Term	WS24/25
Lecturer	Thomas Neumayr
Contact hours per week	1
ECTS credits	2
Course type	Lecture
Examinations	written examination
Language of instruction	English
Places for international students	10

Learning objectives:

After the course, students know the basics of the human-centered design process, have learned helpful methods and techniques for interaction design, and are skilled in the basics of sketching and prototyping in the context of Human-Computer Interaction.

Content:

The usability and user experience of many interactive products (e.g., websites, apps, entertainment devices, smart homes, ...) could be substantially improved if the creators of such technologies would think more about their users' actual needs, goals, and skills. Therefore, the Interaction Design lecture is concerned with presenting tools and techniques that allow students to understand how human-centered design of user interfaces for interactive products works. Topics include usability, user experience, human-computer interaction, and human-centered design methods. Different methods for the design, prototyping, and testing of new user interfaces together with test users are discussed. The course teaches important methods from usability engineering and interaction design such as user observation, requirements analysis, sketching, wireframes, prototyping, etc. To pass the course, students 1) have to pass a final written exam at the end of the term (semester), and additionally 2) get assigned scientific literature to familiarize with recent topics, summarize the main contents, and orally present the essentials to the lecturer.

Prerequisites:

No previous knowledge required.

Presentation Skills for Knowledge Transfer (PRE3UE)

Degree course	KWM.ba
Course title	Presentation Skills for Knowledge Transfer
Course code	PRE3UE
Level	Bachelor
Term	WS24/25
Lecturer	Annamaria Mähr
Contact hours per week	1
ECTS credits	1
Course type	Practice-oriented session
Examinations	oral examination
Language of instruction	English
Places for international students	2

Learning objectives:

Enhancement of communication skills – with a focus on the mandatory professional internship.

Content:

The focus of the course is primarily to enhance oral communication skills, in the areas of presentation, describing statistics and other data, job applications, interview situations, negotiations (especially with regard to the mandatory professional internship) using discussions, role plays, team work based on a multitude of real-life scenarios.

Prerequisites:

A sound knowledge of English, a minimum of B2-level.

Biological and Chemical Basics (09_GBC1UE)

Degree course	MBI.ba
Course title	Biological and Chemical Basics
Course code	09_GBC1UE
Level	Bachelor
Term	WS24/25
Lecturer	Louise Marie Buur
Contact hours per week	1
ECTS credits	1
Course type	Laboratory session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

An insight into the typical way of working in a molecular biology laboratory should be given.

Prerequisites:

Bioinformatics Algorithms (21_ALG5ILV)

Degree course	MBI.ba
Course title	Bioinformatics Algorithms
Course code	21_ALG5ILV
Level	Bachelor
Term	WS24/25
Lecturer	Julia Vetter
Contact hours per week	2
ECTS credits	2,5
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Part 1: Methods for biological sequence alignment: global and local pair-wise alignment, multiple alignment, scoring matrices, phylogenetic trees, heuristic methods for sequence alignment (BLAST, FASTA), profile based methods, characterization of protein families, suffix trees. Part 2: Methods for gene expression analysis: Clustering methods, cluster annotation, gene ontologies, other sources of external knowledge.

Prerequisites:

English 1 (21_KEN1UE)

Degree course	MBI.ba
Course title	English 1
Course code	21_KEN1UE
Level	Bachelor
Term	WS24/25
Lecturer	Sandra Zwirchmayr
Contact hours per week	2
ECTS credits	2
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

n.a.

Content:

Primarily—but not exclusively—by means of simulations, role plays, group work, pair work, presentations, research, debates, as well as video and audio work important elements of grammar will be reviewed, technical and general vocabulary skills will be expanded, and idiomatic expressions will be introduced. All this should lead to an improvement in each student's oral and written communication skills. Some of the areas of topicality include job application documents, job interviews, and current bioinformatics issues as well as those from other areas.

Prerequisites:

Machine Learning and Data Mining (21_MAL5UE)

Degree course	MBI.ba
Course title	Machine Learning and Data Mining
Course code	21_MAL5UE
Level	Bachelor
Term	WS24/25
Lecturer	Ulrich Bodenhofer
Contact hours per week	1
ECTS credits	1,5
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Exercises accompanying the lecture, practical application of the knowledge learned in the lecture.

Prerequisites:

Machine Learning and Data Mining (21_MAL5VO)

Degree course	MBI.ba
Course title	Machine Learning and Data Mining
Course code	21_MAL5VO
Level	Bachelor
Term	WS24/25
Lecturer	Ulrich Bodenhofer
Contact hours per week	1
ECTS credits	1
Course type	Lecture
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Introduction: knowledge discovery and data dining in biomedical applications, supervised data mining – feature selection, classification (classification problem, estimation, evaluation, methods: binary logistic regression, decision trees. k-NN, support vector machines), Unsupervised Data Mining – Clustering, (partitioning methods, k-means, EM - hierarchical methods, single link - density based methods)

Prerequisites:

Technical English 1 (21_TEN3UE)

Degree course	MBI.ba
Course title	Technical English 1
Course code	21_TEN3UE
Level	Bachelor
Term	WS24/25
Lecturer	Alastair Long
Contact hours per week	1
ECTS credits	1
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

n.a.

Content:

Primarily—but not exclusively—by means of group work, pair work, presentations, research, debates, as well as video and audio work the skills acquired in the module English for Communication will be honed and the process will be continued to expand each student's technical and general vocabulary skills as well as idiomatic usage in order to improve their written and oral communication skills. Areas of topicality, among others, are expressing cause and effect, predictions, and insights (past, present, future) into important companies from areas such as pharmaceuticals, agriculture, environment, and biotechnology.

Prerequisites:

Technical English 3 (21_TEN5UE)

Degree course	MBI.ba
Course title	Technical English 3
Course code	21_TEN5UE
Level	Bachelor
Term	WS24/25
Lecturer	Sandra Zwirchmayr
Contact hours per week	1
ECTS credits	1
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Primarily—but not exclusively—by means of group work, pair work, presentations, research, case studies, debates, as well as video and audio work the skills acquired in the module English for Communication as well as those from the third and fourth semesters will be honed and the process will be continued to expand each student's technical and general vocabulary skills as well as idiomatic usage in order to improve their written and oral communication skills.

In addition, areas dealing with stress situations within a company (employee conflicts, generational differences, tough decisions, heterogeneous company cultures, diverse employee interests, etc.) will be dealt with in order to study behavioral patterns and further interpersonal skills.

Prerequisites:

Distributed Information Systems (5_VIS3 U)

Degree course	MC.ba
Course title	Distributed Information Systems
Course code	5_VIS3 U
Level	Bachelor
Term	WS24/25
Lecturer	Jens Krösche
Contact hours per week	2,4
ECTS credits	3
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	English
Places for international students	4

Learning objectives:

Basic practical exercises:

* Client / server communication via TCP / UDP sockets (C++ / Java) using multithreading and taking into account the corresponding synchronization mechanisms

* Remote Method Invocation via Java RMI

* Web Services based on Java-supported REST APIs

* Data Transformation XML / JSON based on Java's JAXB

Content:

The lecture covers the basic theoretical and practical topics regarding client / server communication in today's omnipresent distributed software systems.

Prerequisites:

According to the prerequisites for degree program access

Distributed Information Systems (5_VIS3 V)

Degree course	MC.ba
Course title	Distributed Information Systems
Course code	5_VIS3 V
Level	Bachelor
Term	WS24/25
Lecturer	Jens Krösche
Contact hours per week	1,6
ECTS credits	2
Course type	Lecture
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Basic practical exercises:

* Client / server communication via TCP / UDP sockets (C++ / Java) using multithreading and taking into account the corresponding synchronization mechanisms

* Remote Method Invocation via Java RMI

* Web Services based on Java-supported REST APIs

* Data Transformation XML / JSON based on Java's JAXB

Content:

The lecture covers the basic theoretical and practical topics regarding client / server communication in today's omnipresent distributed software systems.

Prerequisites:

According to the prerequisites for degree program access

Games with a Purpose (05_GWP5IL)

Degree course	MTD.ba
Course title	Games with a Purpose
Course code	05_GWP5IL
Level	Bachelor
Term	WS24/25
Lecturer	Georgi Yordanov Kostov, Jeremiah Diephuis
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	4

Learning objectives:

n.a.

Content:

Introduction to the topic of impact games (serious games) and definition of their areas of application, in addition to gamification models and use cases. The course will focus both on theoretical and practical aspects in the field of game design for educational, motivational and persuasive purposes. Regular game design challenges and the development and evaluation of a prototype in small groups will serve as the primary method of assessment.

Prerequisites:

Fundamentals in design, web, media technology, interaction and games.

Intelligent Systems (05_ISY5IL)

Degree course	MTD.ba
Course title	Intelligent Systems
Course code	05_ISY5IL
Level	Bachelor
Term	WS24/25
Lecturer	Ulrich Bodenhofer
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Even though the title "Intelligent Systems" sounds much broader, this course focuses on machine learning – which is considered the most important subfield in the current artificial intelligence (AI) hype. The course consists (1) of a theoretical, lecture-like part in which the most important concepts and methods of machine learning are introduced and (2) practical exercises that are implemented in Python notebooks using well-known software packages, such as, pandas, scikit-learn, and Tensorflow/Keras. The course is structured as follows:

- Unit 1: Overview of Artificial Intelligence
- Unit 2: Basics of Machine Learning
- Unit 3: Data Preprocessing and Visualization
- Unit 4: Supervised Machine Learning
- Unit 5: Basics of Neural Networks and Deep Learning
- Unit 6: Convolutional Neural Networks
- Unit 7: Further Topics in Deep Learning

Prerequisites:

Fundamentals in design, web, media technology, interaction and games.

Computational Intelligence I (0_1CO1U)

Degree course	DSE.ma
Course title	Computational Intelligence I
Course code	0_1CO1U
Level	Master
Term	WS24/25
Lecturer	Gabriel Kronberger
Contact hours per week	1
ECTS credits	2
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

exercises with python, weka, heuristic lab

Prerequisites:

Entsprechend der Zugangsvoraussetzungen des Studienganges
Computational Intelligence I (0_1CO1V)

Degree course	DSE.ma
Course title	Computational Intelligence I
Course code	0_1CO1V
Level	Master
Term	WS24/25
Lecturer	Gabriel Kronberger
Contact hours per week	2
ECTS credits	3
Course type	Lecture
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Machine Learning & Data Science Hypothesis space, concept learning, feature selection Bias-variance tradeoff, cross-validation Linear regression K-Nearest Neighbor regression / classification Logistic Regression, Linear & Quadratic Discriminant Analysis Ensemble learning, bagging, boosting, Decision Trees, Random Forest, Gradient Boosted Trees Support Vector Machines Artificial Neural Networks, Backpropagation

Prerequisites:

Entsprechend der Zugangsvoraussetzungen des Studienganges

Numerical Methods (0_NUM1U)

Degree course	DSE.ma
Course title	Numerical Methods
Course code	0_NUM1U
Level	Master
Term	WS24/25
Lecturer	Stephan Dreiseitl
Contact hours per week	1
ECTS credits	2
Course type	Practice-oriented session
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Concurrent exercises, practical applications of the theoretical lecture contents.

Prerequisites:

Numerical Methods (0_NUM1V)

Degree course	DSE.ma
Course title	Numerical Methods
Course code	0_NUM1V
Level	Master
Term	WS24/25
Lecturer	Stephan Dreiseitl
Contact hours per week	2
ECTS credits	3
Course type	Lecture
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Introduction: floating point arithmetic, examples from numerical differentiation and integration. Numerical linear algebra: least squares solutions to linear systems, eigenvalues, eigensystems, diagonalisation, fundamentals of monte carlo methods.

Optimisation: Constrained and unconstrained continuous optimisation (gradient descent, quasi-Newton methods). Integer optimisation, branch & bound, branch & cut simplex/complex method, systems of equations: algebraic equations (Newton's method). Differential systems (Runge Kutta etc.), dynamic optimisation: graph searching, Q-learning, approximation algorithms, splines, Fourier transformation.

Prerequisites:

Game Development (GDE1IL)

Degree course	IM.ma
Course title	Game Development
Course code	GDE1IL
Level	Master
Term	WS24/25
Lecturer	Johannes Lugstein
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Graduates know the complex workflow required for the concrete realization of computer games. Students have expertise with a professional 3D game engine and know agile development processes.

Content:

Introduction to game development with a 3D game engine; asset produc-tion, pipeline & integration; fundamentals of sound, networking and phys-ics in modern games; integration of middleware APIs; scripting; data-driven game development; project management in the software domain, agile development methods, software prototyping & testing. In the course, game projects and tech-demos are defined together, each with an innova-tive feature. These are iteratively developed and tested in teams using agile methods. Special consideration is given to 3D multiplayer and net-work games.

Prerequisites:

Hypermedia UX Engineering (HUX1IL)

Degree course	IM.ma
Course title	Hypermedia UX Engineering
Course code	HUX1IL
Level	Master
Term	WS24/25
Lecturer	Patrick James Niebrzydowski
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

Graduates will be familiar with current architectures and frameworks for client-side web programming, as well as the workflow and tools for automating typical workflow in web development. They are able to design multimedia web applications themselves and implement them according to the latest standards and with current tools.

Content:

Modern JavaScript and other client-side languages (e.g. Type-script), workflow tools (e.g. Babel, Webpack), frameworks (e.g. React, Angular, Vue), components, state management (e.g. Redux, Vuex), web APIs (e.g. REST, GraphQL), UI frameworks.

Prerequisites:

Intelligent Media (IME3IL)

Degree course	IM.ma
Course title	Intelligent Media
Course code	IME3IL
Level	Master
Term	WS24/25
Lecturer	Andreas Stöckl
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Graduates have knowledge of applications of artificial intelligence methods for processing and analyzing text data. They can implement different methods for typical practical problems and evaluate the results. Further-more, visualization methods can be applied for presentation and analysis. Graduates understand the broad spectrum of problems, tasks and solu-tion approaches in NLP (Natural Language Processing).

Content:

Fields of application of NLP, Basics of an NLP processing pipeline, Methods for text representation, Text classification, Topic Analysis, Information extraction, Chatbots, Applications in social media and e-commerce

Prerequisites:

Real Time Graphics (RTG1IL)

Degree course	IM.ma
Course title	Real Time Graphics
Course code	RTG1IL
Level	Master
Term	WS24/25
Lecturer	David Christian Schedl, Leopold Johann Böss
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

Students will have a detailed knowledge of advanced techniques in real-time computer graphics and will be able to implement them in selected applications. Students understand theoretical and mathematical aspects of algorithms used in computer games, computer-animated movies and visual film effects.

Content:

Computer graphics fundamentals; algorithms and software; rasterization; transformation pipeline; animation; lighting and illumination; materials; postprocessing and image-based techniques; non-photorealistic render-ing; texturing and texture-based techniques; shadows; ray tracing.

Prerequisites:

Spatial Computing (SCO3IL)

Degree course	IM.ma
Course title	Spatial Computing
Course code	SCO3IL
Level	Master
Term	WS24/25
Lecturer	
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Graduates are familiar with different approaches for spatially connecting virtual and real content. In addition to theoretical and practical content, students also explore UX-related challenges in immersive areas such as virtual reality, augmented reality, embodied interaction, tangible user interfaces, etc.

Content:

Fundamentals of immersive systems (AR/VR/XR) in a spatial context; integration of internal and external sensors and optical systems for track-ing and location-based information; exploration of UI/UX challenges in the XR domain; approaches for multi-user, multi-modal "cross-virtuality" applications

Prerequisites:

Special Topic: Design for Physical Prototyping (STO1IL)

Degree course	IM.ma
Course title	Special Topic: Design for Physical Prototyping
Course code	STO1IL
Level	Master
Term	WS24/25
Lecturer	Sara Mlakar, Samuel Dieter Zühlke, Thomas Preindl
Contact hours per week	2,4
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Physical Prototyping is the process of making a physical representation of an idea. Early in the process physical prototypes can be made of all kinds of materials. Physical prototypes allow designers and users to interact with the idea. By building an idea, designers are challenged to "build to think" and thus gain deeper insights. This course will go beyond early physical prototyping: it is a hands-on introduction to interactive electronics prototyping for students with a variety of backgrounds, including those with no prior experience in electronics. Familiarity with programming is helpful, but not required. Participants learn basic electronics, microcontroller programming, and physical prototyping using the Arduino platform, then use digital and analog sensors, LED lights and motors to build, program and customize a smart prototype. Moreover, students will get enough theoretical background for developing their own physical prototypes.

Prerequisites:

Data Warehousing, OLAP and Business Intelligence (15_DWO1ILV)

Degree course	SE.ma
Course title	Data Warehousing, OLAP and Business Intelligence
Course code	15_DWO1ILV
Level	Master
Term	WS24/25
Lecturer	Henryk Maciejewski
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Basics: Analytical vs. direct data processing – different architectures for different requirements; Data Warehouse as a holistic repository of analytical data; Real application examples of OLAP (Online Analytical Processing) Data warehouse systems.

Building a data warehouse: methodology of the data warehouse implementation process, preservation of data integrity, accuracy and completeness, ETL processes (extract-transform-load), task and meaning of metadata. Database design for Date Warehouse: database requirements for multidimensional queries; Database technologies for OLAP.

Purpose and typical areas of application of data mining in science and industry; data preprocessing and modelling; Feature identification; Critical factors for successful data mining; Data mining process; Methodologies for data mining.

Problem formulation for data mining: prediction problems; clustering; association rules; Text mining and web mining; Structure and pattern identification in time series data. Algorithms: Algorithms for feature selection; Linear methods for regression and classification;

Exercise part: Training in the use of a commercial OLAP development environment.

Prerequisites:

Heuristic and Evolutionary Algorithms (15_HEA1ILV)

Degree course	SE.ma
Course title	Heuristic and Evolutionary Algorithms
Course code	15_HEA1ILV
Level	Master
Term	WS24/25
Lecturer	Michael Affenzeller, Stefan Wagner
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Taxonomy of optimization algorithms, distinction between numerical and heuristic optimization, examples of combinatorial optimization problems and complexity theory, solution space behavior and P and NP problems. Heuristic methods: Problem-specific methods vs. metaheuristics, construction vs. improvement heuristics, neighborhood and distance of solutions, local search, non-population-based methods, Simulated Annealing, Tabu Search. Population-based methods: Ant-Colony Optimization, Swarm Intelligence, Genetic Algorithms, Evolutionary Strategies, Genetic Programming.

In exercises the parameterization of algorithms will be trained, analytical as well as empirical analysis of different optimization techniques using HeuristicLab, a generic open source framework for heuristic optimization methods.

Prerequisites:

Modelling and Simulation (15_MSM1ILV)

Degree course	SE.ma
Course title	Modelling and Simulation
Course code	15_MSM1ILV
Level	Master
Term	WS24/25
Lecturer	Stephan Winkler, Elisabeth Maria Mayrhuber
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Principles of the modeling of dynamical system, taxonomy of dynamic models; continuous modeling & simulation vs. discrete modeling & simulation; stochastic vs. deterministic simulation; linear vs. nonlinear modeling. Basics of optimization techniques, especially for optimizing model parameters as well as identifying system parameters based on measurement data. Growth models, oscillators, and population models. Discrete event specified systems.

In the practical part of the lectures we discuss application examples, especially technical / physical systems, basics of economics, epidemiology and the spreading of contagious diseases, and predator prey systems. MATLAB / Simulink and AnyLogic are used as frameworks for modeling and simulating systems.

Prerequisites:

Scientific Work (15_WIA3SE)

Degree course	SE.ma
Course title	Scientific Work
Course code	15_WIA3SE
Level	Master
Term	WS24/25
Lecturer	Ulrich Bodenhofer
Contact hours per week	1
ECTS credits	1
Course type	Seminar
Examinations	continuous assessment
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Structure and purposes of different forms of scientific working: protocol, report, thesis paper, master's thesis. Techniques of scientific working: scientific material; literature search (libraries, catalogues, publishers, bibliographies, snowball system, search strategies); literature management systems; techniques of presenting scientific material; foreign material; evidence; abbreviations; bibliographies; conceptual planning; choice of topics and reflection, time management, material, presentation, literature management programs.

Prerequisites:

Entsprechend den Zugangsvoraussetzungen des Studiengangs

Big Data Analytics and Interactive Visualization (22_BDV3ILV)

Degree course	SE.ma
Course title	Big Data Analytics and Interactive Visualization
Course code	22_BDV3ILV
Level	Master
Term	WS24/25
Lecturer	Barbara Traxler, Mandy Keck, Holger Stitz
Contact hours per week	2,5
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

- Characteristics and challenges of big data
- Big data analytics stacks and architectures
- Frameworks and algorithms for batch and stream processing
- Hands-on examples using e.g. Hadoop, Map Reduce, Hive, Spark, Kafka
- · Concepts of interactive visualization and visual analytics
- Visualization of multi-dimensional data
- Hands-on visual analytics projects using D3

Prerequisites:

Neural Networks and Deep Learning (22_NDL3ILV)

Degree course	SE.ma
Course title	Neural Networks and Deep Learning
Course code	22_NDL3ILV
Level	Master
Term	WS24/25
Lecturer	Ulrich Bodenhofer
Contact hours per week	3
ECTS credits	5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	German/English
Places for international students	2

Learning objectives:

n.a.

Content:

Architectures of learning systems, layers, and components; inductive design of intelligent systems; the neuron and synapses; formal model of neurons; activation and output functions; neural networks; synaptic modification and learning; learning rules; learning as error minimization; feed-forward networks; error functions; backpropagation and variants; convolutions and convolutional networks; representation learning; error functions, layers, and activation functions in deep learning; recurrent neural networks and the vanishing gradient problem; LSTM and GRU cells; generative adversarial networks.

Prerequisites:

Entsprechend den Zugangsvoraussetzungen des Studiengangs

Intercultural Negotiation (17_INT3I)

Degree course	HCC.ma
Course title	Intercultural Negotiation
Course code	17_INT3I
Level	Master
Term	WS24/25
Lecturer	Martina Gaisch
Contact hours per week	1
ECTS credits	1,5
Course type	Integrated course
Examinations	oral or written examination
Language of instruction	English
Places for international students	2

Learning objectives:

Knowledge of concepts in intercultural communication.

Content:

Theories and core concepts of intercultural communication are conveyed. In doing so, intercultural negotiation techniques are tried out and reflected upon. Examples from practical application areas and exercises to further develop generic key competences are experienced. Further, intercultural negotiation and dialogue skills are practiced and analyzed based on hands-on case studies.

Prerequisites:

No previous knowledge required for Master Students. Bachelor's degree students with good knowledge in English.

Business English Communication Skills (20_BEC3 T)

Degree course	IEM.ma
Course title	Business English Communication Skills
Course code	20_BEC3 T
Level	Master
Term	WS24/25
Lecturer	Jordanka Kretzschmar
Contact hours per week	1
ECTS credits	1
Course type	Individual Training
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Students are familiarized with appropriate terminology from the field of Business English. They learn to use the English language professionally in a professional context and to discuss current and study-relevant topics.

In the process, both the subject-specific vocabulary and grammatical skills are deepened and further developed with the aim of successfully using the foreign language in everyday life, study and work.

Prerequisites:

Intercultural Communication (20_ICC3 I)

Degree course	IEM.ma
Course title	Intercultural Communication
Course code	20_ICC3 I
Level	Master
Term	WS24/25
Lecturer	Martina Gaisch
Contact hours per week	1
ECTS credits	2
Course type	Integrated course
Examinations	continuous assessment
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Theories and core concepts of intercultural communication Processes of intercultural adaptation according to Milton Bennett's stage model and cultural dimensions based on Hall, Hampden-Turner, Hofstede and Lewis Examples and experiences from practical application areas Exercises to develop key competences

Role plays, case studies and critical incidents in intercultural work settings

Prerequisites:

Cross Cultural Business Communication (CCC1IL)

Degree course	ISM.ma
Course title	Cross Cultural Business Communication
Course code	CCC1IL
Level	Master
Term	WS24/25
Lecturer	Martina Gaisch
Contact hours per week	1
ECTS credits	1
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

This course seeks to enhance students' global awareness by challenging their implicit biases and pre-conceived worldviews.

It is sought to broaden their mindsets in terms intercultural and diversity-related concepts.

By engaging in constant reflective practice, they need to look beyond the seemingly obvious and learn to understand the interconnectivity of our VUCA-world.

Prerequisites:

Language 1 (LAN1ILV)

Degree course	ISM.ma
Course title	Language 1
Course code	LAN1ILV
Level	Master
Term	WS24/25
Lecturer	Jordanka Kretzschmar
Contact hours per week	1
ECTS credits	1
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

This course focuses on business communication in a work-related context which should enable students to interact and collaborate effectively using multiple forms of communication across different channels and enhance the language proficiency of each participant.

Prerequisites:

Security Awareness (SAW3ILV)

Degree course	ISM.ma
Course title	Security Awareness
Course code	SAW3ILV
Level	Master
Term	WS24/25
Lecturer	Marcus Nohlberg
Contact hours per week	1,5
ECTS credits	3
Course type	Integrated course
Examinations	written examination
Language of instruction	English
Places for international students	2

Learning objectives:

n.a.

Content:

Learning theory, advertising psychology, internal corporate communication, the concept of culture in various dimensions and its influence on human behaviour, project and change management

Prerequisites: